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Abstract: The Wiener index of a graph is the sum of the distances between all pairs of vertices. In fact, many
mathematicians have study the property of the sum of the distances for many years. Then later, we found that these
problems have a pivotal position in studying physical properties and chemical properties of chemical molecules
and many other fields. Fruitful results have been achieved on the Wiener index in recent years. Most of the research
focus on the extreme values and the corresponding graphs for the non-weighted simple graphs. In this paper, we
consider the edge-weighted graphs. Firstly, we give the exact definition of the distances in edge-weighted graphs.
Secondly, we get a useful variant formula of the Wiener index. Then, we take our attention on edge-weighted trees
of order n. We get the minimum, the second minimum, the third minimum, the maximum, the second maximum
values of the Wiener index, and characterize the corresponding extremal trees.
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1 Introduction

1.1 Background
In chemical graph theory, we use vertices to repre-
sent atoms, and use edges connecting two vertices to
represent the covalence. Then the structure of each
molecule can be expressed as a graph. The molecu-
lar topology is defined as the atoms and the connec-
tion between atoms in chemicals, does not include de-
tails such as bond angles. Because of some important
parameters in a molecular, such as energy, key level
and change density, are topology relevant essentially.
It does make sense that using a graph to represent a
molecular.

And nearly half a century, the development of
quantum chemistry widely is largely due to the re-
sults that the concept of graph being extensive ap-
plied. One of the major topics in this field is molecu-
lar topological index. Molecular topological index is
already can express the structure of molecules quan-
titatively, as an invariant of the graph can be used to
related the relationship between the molecular struc-
ture and performance. Say simply, a topological in-
dex is a numerical quantity related to a graph that
is invariant under graph isomorphism, which can re-
flect the physical and chemical properties and phar-
macological properties of molecules, such as boiling
point, water-solubility, the volume and surface area of
molecular, energy levels, the election distribution, etc.
Topological index of molecular graphs is one of the

most widely used descriptors in quantitative structure
activity relationships. Quantitative structure activity
relationships (QSAR) is a popular computational bi-
ology paradigm in modern drug design, see [2], [7]
and [18].

One of the most widely known topological de-
scriptor is the Wiener index. The Wiener index, which
named after chemist Wiener [22], is defined as the
sum of the distances between all pairs of vertices of
a connected graph. Namely, the Wiener index of a
graph G is

W =W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

We can omit the subscript if there are no other graphs.
The Wiener index is a well-known distance-based
topological index introduced as a structural descrip-
tor for acyclic organic molecules. In fact, the prop-
erty of the sum of the distances in a graph is one of
the favorite problems in mathematics. Many mathe-
maticians have done a lot of research on it. Then we
found that this problem not only inspired the interest
of mathematicians, but also has many application. No
matter in chemistry, physics and molecular biology,
the Wiener index has been highly effective applied,
see [11].

The Wiener index of graphs has been extensively
studied over the past years. In earlier years, the main
task is to study how to calculate the value of the
Wiener index for a certain graph [4],[9]. Then with the
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development of drug design, we need to know the ex-
tremal values and the corresponding extremal graphs
in special kinds of graphs.

The earliest result is found in 1976. Mathemati-
cians Entringer, Jackson and Snyder [5] firstly showed
that the star and the path have the minimum and max-
imum Wiener index, respectively. At that time, they
use the concept of distance in graphs, which is ac-
tually the Wiener index. Many years later, some
chemists got the same results.

For non-weighted simple graphs, the property of
the Wiener index have been achieved fruitful results.
In 1997, Gutman et al.[10], have made a survey of
them.

Recently, Mathematicians have made a lot of
experiments and conjectures on calculating various
kinds of graphs, see some examples in [4], [12] [20].
More importantly, there are many new results on the
extremal values of the Wiener index for some special
kinds of graphs, especially of trees.

For trees with bounded degrees of vertices, Je-
len and Triesch [15] found a family of trees such that
W (T ) is minimized. Fischermann et al. [6] char-
acterized the trees which minimize the Wiener in-
dex among all trees of given order and maximum de-
gree, and the trees which maximize the Wiener index
among all trees of given order.

Moreover, the trees minimizing WP (T ) among
all trees T of order n and k leaves are characterized
in [17], where k no less than 2 and no more than
n−1. Hua Wang [21] characterized trees that achieve
the maximum and minimum Wiener index, given the
number of vertices and the degree sequence, several
algorithms are presented and implemented.

At the same time, mathematicians have found a
variety of sensible variations of the Wiener index, and
got effective conclusions.

The tree that minimizes the Wiener index among
trees of given maximal degree is studied in [16], the
first two largest and first two smallest modified Wiener
indices in are also identified, respectively. Bolian Liu
et al. give the minimum (resp. maximum) Wiener
polarity index of trees with n vertices and maximum
degree are given, and the corresponding extremal trees
are determined, where maximum degree no less than
2 and no more than n − 1. Juan Rada [19] found the
variation of the Wiener index under certain tree trans-
formations, which can be described in terms of coa-
lescence of trees. As a consequence, conditions for
non-isomorphic trees having equal Wiener index are
presented.

However, The angle of view of former studies are
usually limited within non-weighted graph. There-
fore, they only considered the connection between
each atom in the molecule, and ignore the charac-

teristics of the atom and atomic bond, such as the
length of atomic bond. As well known, these fac-
tors play a decisive role in the physical and chemi-
cal properties of molecules. For instance, the length
of atom bond is strongly correlated to the stability of
the molecule, which is a necessary factor in exam-
ining physical and chemical properties of molecules.
Therefore, it is necessary to research the molecular
structure where the lengths of the bonds taken into
consideration. Which more relevant to the chemical
actual background. The problem can be transformed
to consider the topological indices for edge-weighted
graphs, where the weight of the edge represents the
length of the atomic bond.

1.2 Notations
In this paper, we consider the extreme values of the
Wiener index for edge-weighted trees of order n, de-
note by Tn. Undefined notation and terminology can
be found in [1].We show that the minimum, the second
minimum, the third minimum, the maximum and the
second maximum Wiener index for Tn, respectively.
And the corresponding weighted trees reach the ex-
treme values are discussed.

Let G be a connected edge-weighted graph with
vertex set V (G) and edge set E(G). For each edge e
ofG, let ωG(e) be its weight. For clarity of exposition,
we shall refer to the weight of a path p in a weighted
graph as its length, denote by Lp,

Lp =
∑

e∈E(p)

ωp(e).

Similarly the minimum weight of a (u, v)-path will
be called the distance between u and v, denote by
dG(u, v). The diameter of a graph G, denoted by
D(G), is the largest distance between two vertices
in G. Since the Wiener index is concerned with the
distance of vertices, the diameter is important for us
in studying the index.The Wiener index of weighted
graph G is defined as

W =W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

We can omit the subscript if there is no other graph.
In a tree T ∈ Tn, any two vertices are connected

by a unique path. Consequently, the Wiener index of
T can be rewritten as the sum of the lengths of p ⊆
T , where P is the subgraph of which is a path, i.e.,
W (T ) =

∑
p⊆T

Lp. Let P i be the set of paths with i

edges. Hence, we have a variant.

W =W (G) =
∞∑
i=1

∑
p∈Pi

Lp (1)
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Let e1, e2, · · · , en−1 be the edge sequence in
T , the corresponding edge weights sequence is
a1, a2, · · · , an−1. We denote by B the sum of all the
edge weights in T . For a graph G, let d(u) be the de-
gree of a vertex u in G, and N(u) be the neighbor set
of u. If d(u) = 1, then u is said to be a pendent vertex
in G, and the edge incident to u is referred to as pen-
dent edge. The neighbor of pendent vertex is called a
support vertex. Denoted by Pn and Sn , the weighted
path and the weighted star on n vertex, respectively.
Note that the weighted star is unique, but the weighted
path is not unique for different arrangement of edge-
weights. We denote by T i

n (i = 0, 1, 2, . . . , n − 3 )
the set of trees with i non-pendent edges. Thus Tn is
sorted by the number of non-pendent edges. Namely,

Tn =
n−3∪
i=0

T i
n .

Obviously, there is only star Sn in T 0
n , no mat-

ter what weights the edges are given . Clearly T 1
n

is the set of the trees with two non-pendent vertices
vi+1 and vi+2 adjacent to i pendent vertices and j
pendent vertices, respectively, which is denoted by T 1

ij
(1 ≤ i, j ≤ n−3, i+ j = n−2) in detail (see Figure.
1).
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Figure 1: T 1
ij

2 The minimal values of the Wiener
index for Tn

Firstly, let’s introduce a useful transformation. Sup-
pose T ∈ Tn with at least one non-pendent edge,
say e = uv. Let Q1 = {w|w and u are in the
same component of T\uv}, and Q2 = {w|w and
v are in the same component of T\uv}. By con-
tracting uv to v and adding a pendent vertex u, with
ωT (uv) = ω′

T (uv), and ωT (f) = ω′
T (f) for any

f ∈ E(T\uv), we get a new tree T ′. This transfor-

mation is denoted by the f(u, v)-transformation on T
(see Fig. 2).

&%
'$

&%
'$

u v
r r

=⇒
f(u, v)

Q1 Q2

&%
'$

&%
'$
v

u

r
r

Q1 Q2

T

T ′

Figure 2: f(u, v)-transformation

The following lemma is crucial.

Lemma 1 Suppose T ∈ Tn with at least one non-
pendent edge e = uv. T ′ is the tree get from T
by f(u, v)-transformation. Then we have W (T ) >
W (T ′).

Proof: Let w1 be a vertex in Q1 and w2 be a vertex
in Q2. Since

W (T ) =
∑

w1∈Q1

d(w1, u) +
∑

w2∈Q2

d(w2, u)

+
∑

w1∈Q1

d(w1, v) +
∑

w2∈Q2

d(w2, v)

+
∑

w1∈Q1,w2∈Q2

d(w1, w2) + d(v, u)

+
∑

{x,y}⊆Q1

d(x, y) +
∑

{x,y}⊆Q2

d(x, y).

Assume that ω(uv) = a (a > 0). Then by
straightforward observation, we have that the dis-
tance between w1 and w2 decreases by f(u, v)-
transformation. There are altogether |Q1| · |Q2| such
pairs. So the total reduction is |Q1| · |Q2| · a. The
distance between w1 and u increases a by f(u, v)-
transformation. The total is |Q1| · a. The distance
between w1 and v decreases a. The total is |Q1| · a.
Therefore the sum of d(w1, u) + d(w1, v) does not
change. Similarly, the sum of d(w2, u) + d(w2, v)
does not change, too. And the distances between all
pairs of the remaining vertices do not change. Conse-
quently,

W (T )−W (T ′) = |Q1| · |Q2| · a,

By the definition ofQ1 andQ2, we have |Q1| ≥ 1 and
|Q2| ≥ 1. Hence we get W (T ) > W (T ′). ⊓⊔
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The following theorem shows the sharp lower
bound of W (T ) in weighted trees.

Theorem 2 The weighted star Sn has the minimum
value of the Wiener index in weighted trees of order

n, and W (Sn) = (n− 1)B, where B =
n−1∑
i=1

ai .

Proof: By contradiction, we assume that weighted
tree T ̸= Sn has the minimum Wiener index. Then
T has at least a non-pendent edge. By f(u, v)-
transformation, we get a new tree T ′. From Lemma1,
we have W (T ) > W (T ′), a contradiction. We con-
clude that T = Sn.

Now let’s compute the Wiener index of weighted
star Sn. Since the diameter of Sn is 2. Let p be a path
in Sn, then either p ∈ P1 or p ∈ P2 . According to
variant formula Eq.(1), we have

W (Sn) =
∑
p∈P1

Lp +
∑
p∈P2

Lp

Obviously,

∑
p∈P1

Lp =
n−1∑
i=1

ai = B

Now we compute
∑
p∈P2

Lp. Since for any edge

e ∈ E(Sn), there are n−2 paths covering e in P2. So
that ω(e) will accumulate n − 2 times in computing∑
P∈P2

Lp.Therefore,
∑
p∈P2

Lp = (n− 2)B.

From the above, W (Sn) = (n− 1)B.
The following two theorems consider the sec-

ond minimum value and the third minimum value of
W (T ) for weighted trees. Firstly, Let’s introduce
some notations. Denote by Smini,j , the weighted tree
belongs to T 1

ij and the weight of the unique non-
pendent edge is amin = min

1≤i≤n−1
{ai}. Let asec be the

second minimum number of a1, a2, · · · , an−1. Simi-
larly, denote by Sseci,j (Sthirdi,j ), the tree with the unique
non-pendent edge weights the second (third) mini-
mum number of a1, a2, · · · , an−1.

Theorem 3 The weighted tree Smin1,n−3 has the second
minimum value of the Wiener index for weighted trees
of order n, andW (Smin1,n−3) = (n−1)B+(n−3)amin,
where amin = min

1≤i≤n−1
{ai}

Proof: Suppose T ∈ Tn has the second minimum
value of Wiener index. By Theorem 2, we have T ̸=
Sn. Thus, T has at least one non-pendent edge. If
T has at least two non-pendent edges. By f(u, v)-
transformation on T , we get T ′, and T ′ ̸= Sn. By

Lemma 1, we have W (T ) > W (T ′), contradicting
to the choice of T . So there is only one non-pendent
edge in T , i.e., T ∈ T 1

n = T 1
ij , (1 ≤ i, j ≤ n − 3,i +

j = n − 2). We shall compute the Wiener index of
T 1
ij . For the sake of convenience, we regard T 1

ij as two
stars joining together (see Figure. 3).
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Figure 3:

According to formula ofW (Sn), for any T ∈ T 1
ij ,

W (T ) =
3∑
i=1

∑
p∈Pi

Lp

=
∑
p∈P1

Lp +
∑
p∈P2

Lp +
∑
p∈P3

Lp

= B + i · (a1 + a2 + · · ·+ ai+1)

+(n− i− 2) · (ai+1 + ai+2 + · · ·+ an−1)

+j · (a1 + a2 + · · ·+ ai) + i · j · ai+1

+i · (ai+2 + ai+3 + · · ·+ an−1)

= (n− 1)B + i · j · ai+1 (2)

Since (n − 1)B is a constant, then W (T ) is decided
by the value of i ·j ·ai+1. Now we discuss the value of
i ·j ·ai+1. Since 1 ≤ i, j ≤ n−3, i+j = n−2. Then
according to the principle of rearrangement inequality,
we may conclude that

(n− 3) · amin ≤ i · j · ai+1

with equality if and only if i = 1, j = n − 3, ai+1 =
amin = min

1≤i≤n−1
{ai}, namely T = Smin1,n−3. The proof

is completed. ⊓⊔

Theorem 4 If asec ≥ 2(n−4)
n−3 amin, then the the

weighted tree Smin2,n−4 has the third minimum value of
the Wiener index for weighted trees of order n; and
if asec ≤ 2(n−4)

n−3 amin, then the weighted tree Ssec1,n−3
has the third minimum value of the Wiener index for
weighted trees of order n.

Proof: Suppose T ∈ Tn has the third minimum value
of Wiener index. By Theorem2, we have T ̸= Sn.
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Thus, T has at least one non-pendent edge. Let m be
the number of the non-pendent edges in T .

If m ≥ 3, by f(u, v)-transformation on T , we
get a new tree T ′, T ′ ̸= Sn and T ̸= Smin1,n−3. From
Lemma1, we have W (T ) > W (T ′), contradicting to
the choice of T .

Ifm = 2, i.e., T ∈ T 2
n . Then T (see Figure.4 ) has

three non-pendent vertices, says u ,v and w, adjacent
to r, s and t pendent vertices, where s ≤ 0, r, t ≤ 1,
r + s+ t = n− 3.

r
r

r
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r
r

r
pp
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p p p
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�
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ar+2 as+r+1

r r r
T
T
T

D
D
D

�
�
�

Figure 4: T ∈ T 2
n

Now let’s compute the Wiener index of weighted
tree T .

W (T ) =
4∑
i=1

∑
p∈Pi

Lp

=
∑
p∈P1

Lp +
∑
p∈P2

Lp +
∑
p∈P3

Lp +
∑
p∈P4

Lp

It is obvious that
∑
p∈P1

Lp = B

And we have∑
p∈P2

Lp

= r · (a1 + a2 + · · ·+ ar+1)

+(s+ 1) · (ar+1 + · · ·+ ar+s+2)

+t · (ar+s+2 + · · ·+ an−1)∑
p∈P3

Lp

= (s+ 1) · (a1 + a2 + · · ·+ ar)

+ar+1r(s+ 1)

+(s+ 1) · (ar+s+3 + · · ·+ an−1

+t · (ar+1 + · · ·+ ar+s+1)

+(s+ 1) · t · ar+s+2∑
p∈P4

Lp

= t · (a1 + a2 + · · ·+ ar)

+r · (ar+s+3 + · · ·+ an−1)

+r · t · (ar+1 + · · ·+ ar+s+2)

By simplification, we have

W (T ) = (n−1)B+r(n−2−r)ar+1+t(n−2−t)ar+s+2.

Since Smin2,n−4 ∈ T 1
ij , according to Eq. (2), we have

W (Smin2,n−4) = (n− 1)B + 2(n− 4)amin.

As we know that Smin2,n−4 ̸= Sn, S
min
2,n−4 ̸= Smin1,n−3.

W (T )−W (Smin2,n−4)

≥ [r(n− 2− r) + t(n− 2− t)]amin − 2(n− 4)amin

≥ 2(n− 3)amin − 2(n− 4)amin > 0

Namely, for any T ∈ T 2
n , we have

W (T ) > W (Smin2,n−4).

It contradicts to the choice of T .
From above discussion, we have m = 1, i.e.,T ∈

T 1
n . According to Eq. (1), we have

W (Smin1,n−3) < W (Smin2,n−4) < · · · < W (Smin⌊n−2
2

⌋,⌈n−2
2

⌉).

Moreover, it is clear that

W (Smin1,n−3) < W (Ssec1,n−3) < W (Sthird1,n−3).

We can make the conclusion that the weighted tree
with the third minimum value of the Wiener index is
Ssec1,n−3 or Smin2,n−4 . Furthermore, since

W (Ssec1,n−3)−w(Smin2,n−4) = (n−3)asec−2(n−4)amin.

Then if asec > 2(n−4)
n−3 amin, Smin2,n−4 has the

third minimum value of the Wiener index; if asec <
2(n−4)
n−3 amin, Ssec1,n−3 has the third minimum value of

the Wiener index.

3 The maximal values of the Wiener
index for Tn

Let Pn−1 = e1e2 · · · en−1 be the classes of the
weighted paths with edge weight a1, a2, · · · , an−1. re-
spectively. We denote by P ∗

n the weighted path, which
the distribution of the weights is unimodal, namely,

a1 ≤ a2 ≤ · · · ≤ a⌈n
2
⌉−1 ≤ a⌈n

2
⌉

and
a⌈n

2
⌉ ≥ a⌈n

2
⌉+1 ≥ · · · an−2 ≥ an−1.

Firstly, let’s introduce a useful transformation.
Suppose T ∈ Tn. Let v0v1v2 · · · vd be the longest path

5

WSEAS TRANSACTIONS on MATHEMATICS Yajing Wang, Yumei Hu

E-ISSN: 2224-2880 1131 Issue 12, Volume 11, December 2012



in T , and vi be the first vertex with degree more than
2. Suppose N(vi) \ {vi−1, vi+1} = {u1, u2, · · · , uj}.

By deleting the edge viuk and adding the edge
v0uk(k = 1, 2, · · · , j), we get a new tree T ′. Then
let ωT (viuk) = ωT ′(v0uk) for k = 1, 2, · · · , j, and
ωT (f) = ωT ′(f), for any f ∈ E(T\viuk). This trans-
formation is denoted by the g-transformation on T (see
Fig.5).

r r r r r r· · ·
v0 v1 v2 vi+1vivi−1

Qi+1&%
'$Qi&%

'$

⇒
Qi&%

'$
Qi+1&%

'$r r r r r r· · ·
v0 v1 v2 vi−1 vi vi+1

T

T ′

Figure 5: g-transformation

Lemma 5 Let T be a weighted tree of order n. If
T ̸∈ Pn−1 by g-transformation on T , we get T ′. Then
W (T ) < W (T ′).

Proof: Let v0v1v2 · · · vd be the longest path in T ∈
Tn, and vi be the first vertex with degree more than
2, since T ̸∈ Pn−1. Let Q1 = {w|w and vi are
in the same component of T\{vi−1vi, vivi+1}}, and
Q2 = {w|w and vi+1 are in the same component of
T\{vivi+1}}.

Since

W (T ) =
i∑

k=0

i+1∑
j=k+1

d(vk, vj) +
i+1∑
j=0

∑
w1∈Qi

d(w1, vj)

+
i+1∑
j=0

∑
w2∈Qi+1

d(w2, vj) +
∑

{x,y}⊆Qi

d(x, y)

+
∑

w1∈Qi,w2∈Qi+1

d(w1, w2) +
∑

{x,y}⊆Qi+1

d(x, y).

We consider the change of the distances between
all pairs of vertices after g-transformation on T . If
w1 ∈ Q1, w2 ∈ Q2, then the value of d(w1, w2) in-

creases. Note that the value of
i∑

j=0
d(w1, vj) does not

change, and the distances between remaining pairs of
vertices do not change.

Consequently, W (T ) < W (T ′). The proof is
completed. ⊓⊔

The following theorem shows the maximum
value of W (T ) for weighted trees.

Theorem 6 The weighted path P ∗
n has the maximum

value of the Wiener index for weighted trees of order

n. Moreover, W (P ∗
n) =

n−1∑
k=1

k(n− k)ak.

Proof: By contradiction, we assume that T ∈ Tn has
the maximum Wiener index. If T ̸∈ Pn−1 , by g-
transformation on T , we get a new tree T ′. By Lemma
5, we have W (T ) < W (T ′), a contradiction. So T ∈
Pn−1 (see Figure.6).

r r r r r r r r· · ·
en−2

an−2

en−1

an−1

e2e1 ek

aka2a1 · · ·

Figure 6: T ∈ Pn−1

We now compute the Wiener index of T . Let p
be a path covering the edge ek(k = 1, 2, · · · , n − 1).
There are k different choices on the left of ek in p,
while n− k on the right. So there are k(n− k) paths
covering the edge ek. So the accumulation times of
the weight of ek is k(n − k). when calculating the
Wiener index of T . Therefore,

W (T ) =
n−1∑
k=1

k(n− k)ak.

Now we consider the maximum value of W (T ). Let
∅(k) = k(n− k), k = 1, 2, · · · , n− 1 , we have

∅(1) ≤ ∅(2) ≤ · · · ≤ ∅(⌈n
2
⌉),

∅(⌈n
2
⌉) ≥ ∅(⌈n

2
+ 1⌉) ≥ · · · ≥ ∅(n− 1).

According to the principle of rearrangement in-
equality, we may conclude that the value of W (T )
reaches its maximum when the edge weights sequence
satisfies

a1 ≤ a2 ≤ · · · ≤ a⌈n
2
⌉−1 ≤ a⌈n

2
⌉

and
a⌈n

2
⌉ ≥ a⌈n

2
⌉+1 ≥ · · · an−2 ≥ an−1.

i.e., T = P ∗
n . And W (P ∗

n) =
n−1∑
k=1

k(n− k)ak. ⊓⊔

Before considering the second maximum value
of the wiener index, we introduce a special kind of
weighted trees. We denote by T ∗

n , the set of the
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weighted trees of order n, with only one 3-degree
vertex (which also called branching vertex), three 1-
degree vertices and the other vertices are of degree 2.
The diameter of T , denote by D(T ), is the maximum
distance in T . Let

T ∗1
n = {T : T ∈ T ∗

n , D(T ) = n− 2},

T ∗2
n = {T : T ∈ T ∗

n , D(T ) < n− 2}.

Then T ∗
n = T ∗1

n

∪
T ∗2
n .

Suppose the weighted tree H ∈ T ∗2
n , let

P = v0v1v2, · · · , vD(H), the longest path in H ,
and dH(vi) = 3. Let Q = {u1, u2, · · · , uj} =
{w ∈ V (H)|w and vi are in the same compo-
nent of H\{vi−1vi, vivi+1}}, where 2 ≤ j ≤
min{i,D(H) − i}. By deleting the edge u1u2 and
adding the edge v0u1, we get a new tree H ′. Let
ωH(u1u2) = ωH′(v0u1), and ωH(f) = ωH′(f) for
any f ∈ E(H\u1u2). The transformation from H to
H ′ is denoted the h-transformation on H (see Fig.7).

r r r · · · r r r · · · r r
vD(H)−1 vD(H)

rrr
Q
Q

QQ

ppp r
\
\\

u1
u2

u3

uj

v0 v1 v2 vi+1vivi−1

⇒

r r r r r r r· · ·
u1 v0 v1 v2

rr
Z

ZZ

S
SS
rppp

vi−1 vi vi+1

r r· · ·
vD(H)−1 vD(H)

u2

u3

uj

H

H ′

Figure 7: h-transformation

Lemma 7 Suppose H ∈ T ∗2
n . By h-transformation

on H , we get H ′. Then we have W (H) < W (H ′).

Proof: Since

W (T ) =

D(H)−1∑
k=0

D(H)∑
r=k+1

d(vk, vr) +
j∑

k=2

D(H)∑
r=0

d(uk, vr)

+
j∑

k=2

d(u1, uk) +
i∑

k=0

d(u1, vk)

+

D(H)∑
k=i+1

d(u1, vk) +
j−1∑
k=2

j∑
r=k+1

d(uk, ur)

We consider the change of the distances between all
pairs of vertices after h-transformation on H .

First of all, the value of
j∑

k=2
d(u1, uk) +

i∑
k=0

d(u1, vk) does not change.

The distance between u1 and vk (k =
i + 1, i + 2, . . . , D(H) ) increases, since p =
v0v1v2, · · · , vD(H) is the longest path. The distances
between all pairs of the remaining vertices do not
change. Consequently, we have W (H) < W (H ′).
The proof is thus completed. ⊓⊔

Now let’s introduce another useful transforma-
tion. Suppose the weighted tree H ∈ T ∗1

n , let p =
v1v2, · · · , vn−1 be the path inH . Let vi be the branch-
ing vertex, i.e., d(vi) = 3. Without lose of generality,
we can assume 2 ≤ i ≤ ⌈n−1

2 ⌉. By deleting edge vivn
and adding the edge vi−1vn, we get a new treeH ′. Let
ωH(vivn) = ωH′(vi−1vn), and ωH(f) = ωH′(f) for
any f ∈ E(H\vivn). The transformation is denoted
by the ψ-transformation on (see Fig. 8).

r r r · · · r r r · · · r r r
v1 v1 v3 vi+1vivi−1 vn−3 vn−2 vn−1

vn
r

⇒

r r r · · · r r r · · · r r r
v1 v2 v3 vi+1vivi−1 vn−3 vn−2 vn−1

vn
r

H

H ′

Figure 8: ψ-transformation

Lemma 8 Suppose H ∈ T ∗1
n . By ψ-transformation

on H , we get a new tree H ′. Then we have W (H) <
W (H ′).

Proof: Let a (a > 0) be the weight of edge vi−1vi.
Since

W (T ) =
n−2∑
k=1

n−1∑
r=k+1

d(vk, vr) +
i−1∑
j=1

d(vj , vn)
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+
n−1∑
j=i

d(vj , vn)

Now we consider the change of the distances be-
tween all pairs of vertices. The distance between the
vertex vj and vn decreases a, for j = 1, 2, . . . , i − 1.
There are altogether i− 1 such pairs. So the total de-
crease is (i− 1)a. The distance between the vertex vj
and vn increases a, for j = i, i+ 1, . . . , n− 1. There
are altogether n − i such pairs. So the total increase
is (n − i)a. The distances between all pairs of the
remaining vertices do not change. Consequently,

W (H)−W (H ′) = (i− 1)a− (n− i)a

= (2i− n− 1)a

Since 2 ≤ i ≤ ⌈n−1
2 ⌉ and a > 0 , then we have

W (H) < W (H ′). ⊓⊔
Denote by H∗ the weighted tree in T ∗1

n with
two pendent vertices adjacent to the unique branch-
ing vertex. Let p = v1v2, · · · , vn−1 be the path with
D(H∗) edges in H∗ with the corresponding weights
are a1, a3, · · · , an−1, and the edge v2vn weights a2
(see Fig. 9). The weights a1, a2, · · · , an−1 meet the
following conditions:

a1 ≤ a2 ≤ · · · ≤ a⌈n
2
⌉−1 ≤ a⌈n

2
⌉,

and

a⌈n
2
⌉ ≥ a⌈n

2
⌉+1 ≥ · · · ≥ an−2 ≥ an−1.

r r r r · · · r r r
r

v1 v2 v3 v4

a1 a3

a2
a4

vn−3 vn−2 vn−1

an−2 an−1

vn

Figure 9: H∗

Theorem 9 The weighted tree H∗ has the maximum
value of the Wiener index in T ∗

n .

Proof: Suppose H ∈ T ∗
n have the maximum Wiener

index in T ∗
n . Then either H ∈ T ∗1

n or H ∈ T ∗2
n .

If H ∈ T ∗2
n . By h-transformation on H , we get a

new treeH ′. By Lemma7, we haveW (H) < W (H ′).
It contrary to the hypothesis.

So H ∈ T ∗1
n . Let p = v1v2, · · · , vn−1 be the

longest path in H , and d(vi) = 3. Without lose of

generality, we can assume 2 ≤ i ≤ ⌈n−1
2 ⌉. From

Lemma 8, we can conclude that the branching vertex
in H is v2.

We shall calculate the Wiener index ofH . For the
sake of convenience, we look H as two paths joining
together (see Fig. 10).

r r r r · · · r r r
v1 v2 v3 v4 vn−3 vn−2 vn−1

a1 a3 a4 an−2 an−1

vnr
r r r · · · r r r
v2 v3 v4 vn−3 vn−2 vn−1

a2
a3 a4 an−2 an−1

Figure 10:

According to Wiener index formula of Pn,

W (H) = (n− 2)

(
a1 +

n−1∑
k=3

ak

)

+
n−3∑
k=2

[(n− 1)− k − 1](k − 1)ak+1

+(n− 2)
n−1∑
k=2

ak

+
n−3∑
k=2

[(n− 1)− k − 1](k − 1)ak+1

−(n− 2)
n−1∑
k=3

ak + a1 + a2

+
n−4∑
k=2

[(n− 1)− k − 1](k − 1)ak+2

= (n− 1)B +
n−3∑
k=2

2(n− k − 2)(k − 1)ak+1

−
n−3∑
k=3

(n− k − 2)(k − 1)ak+1

= (n− 1)B + (2n− 4)a3

+
n−3∑
k=3

(n− k − 2)k · ak+1

= (n− 1)B + (2n− 4)a3

+
n−2∑
k=4

(n− k − 1)(k − 1)ak
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= (n− 1)B +
n−2∑
k=3

(n− k − 1)(k − 1)ak

According to the principle of rearrangement in-
equality, we may conclude that W (H) will reach its
maximum value while the edge weights sequence sat-
isfies

a1 ≤ a2 ≤ · · · ≤ a⌈n
2
⌉−1 ≤ a⌈n

2
⌉

and

a⌈n
2
⌉ ≥ a⌈n

2
⌉+1 ≥ · · · ≥ an−2 ≥ an−1.

i.e., H = H∗. Moreover,

W (H∗) = (n− 1)B +
n−2∑
k=3

(n− k − 1)(k − 1)ak

The proof is completed. ⊓⊔
The following theorem shows the second maxi-

mum value of W (T ) for weighted trees.

Theorem 10 Suppose T ∈ Tn has the second max-
imum value of the wiener index, then T ∈ Pn−1 or
T = H∗.

Proof: Suppose T ∈ Tn, T ̸= P ∗
n have the second

maximum Wiener index. If T ̸∈ Pn−1 and T ̸∈ T ∗
n ,

by g-transformation, we can get weighted tree H ′. By
Lemma5, we have

W (H) < W (H ′),

a contradiction. So we have either T ∈ Pn−1 or
T ∈ T ∗

n . By Theorem9, the weighted tree H∗ has
maximum Wiener index in T ∗

n .Therefore, if T ∈ Tn
has the second maximum value of the Wiener index.
Then T ∈ Pn−1 or T = H∗. ⊓⊔

4 Conclusion
We explore a new class of trees for computing Wiener
indices that have not been studied before to the best
of our knowledge.We introduced tree operations and
derived formulas for the Wiener indices under these
operations. Our main results are listed as follows.

1. The weighted star Sn has the minimum value
of the Wiener index in weighted trees of order n, and

W (Sn) = (n− 1)B, where B =
n−1∑
i=1

ai ;

2. The weighted tree Smin1,n−3 has the second min-
imum value of the Wiener index for weighted trees of
order n, and W (Smin1,n−3) = (n− 1)B + (n− 3)amin,
where amin = min

1≤i≤n−1
{ai}

3. If asec >
2(n−4)
n−3 amin, then the the weighted

tree Smin2,n−4 has the third minimum value of the Wiener
index for weighted trees of order n; and if asec <
2(n−4)
n−3 amin, then the weighted tree Ssec1,n−3 has the

third minimum value of the Wiener index for weighted
trees of order n.

4. The weighted path P ∗
n has the maximum value

of the Wiener index for weighted trees of order n.

Moreover, W (P ∗
n) =

n−1∑
k=1

k(n− k)ak.

5. Suppose T ∈ Tn has the second maximum
value of the wiener index, then T ∈ Pn−1 or T = H∗.
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